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NOMENCLATURE

Cu Eddy viscosity coefficien; (Eq. 3). ..

C , 2  Coefficients of dissipation equation (Eq. 8).

k Turbulence kinetic energy per unit mass,

11u?+ u 2+u)

Lll 2 Integral length scale (eq. 1).

I.,L Length parameters.

it Dissipation length scale.

"i Mixing length.

P Rate of production of turbulence kinetic energy.

q A velocity associated with turbulence.

Re Reynolds number.

RI Two-point autocorrelation of streamwise velocity.

- S Strain.

S Components of strain tensor (Eq. 2).

St Total strain = strain x time.

. t Time.

u' Components of velocity fluctuations; i - 1,2,3.

U Components of total velocity Ui - U + u'- i=1,2,3

- xi  Cartesian Coordinate; i=1,2,3.

... Rate of dissipation of turbulence kinetic energy.

Eddy viscosityV.:

SPECIAL NOTATION

Denotes a time-averaged value.
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*' 1. Introduction

Until the past twenty years, turbulence was thought to be

totally chaotic. Most early approaches to understanding and

predicting turbulent flows were statistical in nature. In them,

statistically steady turbulent flows were considered

superpositions of time mean velocity profiles and random 0

fluctuations about those means. Although this approach has had ."-

notable successes, the goal of finding a single method capable of

simulating all, or at least a wide range, of turbulent flows has

proved elusive. This may indicate that the concepts embodied in lo

the statistical approach do not provide a complete description of

the phenomena occuring in turbulent flows.

In the last twenty years, it has become clear that coherent

or organized structures and events not only occur in turbulent

flows but are probably responsible for many of the important

" properties of these flows. In particular, organized structures

are now thought to account for a large fraction of the mass,

momentum, and energy transport and production of new turbulent

motions. Indeed, a reasonable picture of a turbulent flow may be

* one in which coherent structures or events containing a small

fraction of the velocity fluctuations are responsible for much of -

the property transport. On the other hand, in this picture,
incoherent motions make up the bulk of the fluctuating field but
account for only a small fraction of the transport. However, the

incoherent motions mask the coherent events, making them

difficult to find in the laboratory; this may be the reason why

they remained undiscovered for so long.

This picture of turbulence, if correct, indicates that the

events occuring in turbulent flows may be flow dependent.
-' Consequently, it may not be possible to treat all turbulent flows

* with a single model containing a small number of empirical

-S i .
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constants or functions. Turbulence models of the future may need

*to reflect the physics of each particular region of a flow i.e. --

they may need to be different in each region, or zonal in nature. .-

The work reported herein attempts to resolve some questions

raised by this picture of turbulent flows. The approach is to

S simultaneously look at a turbulent flow with statistical and

visualization techniques. Statistical methods provide the

quantities contained in nearly all currently used turbulence

models while visualization methods are the best known means of

revealing the coherent structures. To carry out such a program,

one needs detailed velocity field data. The best source of such

data at present is full simulations of turbulent flows, which are

available for only a few simple flows. Because the required data

were available for them, we decided to concentrate on homogeneous ....

turbulent flows in this study. These flows may be structurally

different from flows of technological interest, but their

simplicity makes them easier to study. It is also easier to test

ideas about turbulence and its modeling on these flows. In

particular, we shall study whether a single model (including a

single set of constants) can be applied to a variety of ..-

homogeneous turbulent flows visually with the aim of determining

whether the mechanisms of turbulent transport and production in

them are similar to those in inhomogeneous flows.

In the usual view of turbulent flows, the phenomena to be

modeled are the production of new turbulent fluctuations, the 0

redistribution of energy among the components of the turbulence,

viscous dissipation, and diffusion. In homogeneous turbulence,

- all statistical average quantities are independent of position so

diffusion does not occur. The production terms are not modeled

in any flow and so, never require special attention. The

redistribution terms, to which the fluctuating pressure makes a

large contribution, have been studied extensively by other

-2-
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authors including Feiereisen et al (1981), Shirani et al (1981),

and Rogallo (1981)7 we are not in position to add significantly

to their contributions. For these reasons, the statistical part 9

of this study will concentrate on the modeling of the length

scales and the dissipation. Our decision to study these was

reinforced by the general impression that these are the weakest

points in current turbulence models.

The plan of this report is as follows. In the next chapter,

we shall use the results of full simulations of homogeneous -.

turbulent shear flow to look for evidence of the turbulence

production mechanisms that are known to exist in inhomogeneous

shear flows. The object is to discover similarities and

differences between the two types of flows with the goal of

shedding light on the question of whether one can expect the same

model to deal with both types of flow. We find that the . . "

structures in the two flows are different; the mechanism of

turbulence production in the homogeneous flow appears to be more

akin to that of the inner region of the boundary layer than to

that of the inhomogeneous shear layer.

In Chapter 3, we shall look at the length scales of

turbulence in homogeneous flows including both shear flow and two _

kinds of irrotational strain flow. The objective is to determine

how well the models match the actual length scales in the

homogeneous flows.

Turbulence models, especially the currently popular two-

equation models, use the dissipation of turbulence energy as a

means of determining the length scale. The models used in the

dissipation equation are generally considered more suspect than

those used in the kinetic energy equation. Accordingly, we shall

look at the models used in the dissipation equation in Chapter 4

to determine whether a model with a single set of constants can

be applied to all of these flows. The results can be regarded as

evidence as to whether one model can serve for a variety of flows

-3-
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in the more general case. We shall find that the constants do

require variation from flow to flow. 0

The data used in this study were taken from the full simulations

of homogeneous turbulence made by Rogallo (1981) and Lee and

Reynclds-(1.984); they provided data for which the authors of this -.

* report are grateful. The raw data are given in Tables 1-3.

2. Structure in Homogeneous Shear Flow

Experimental evidence accumulated in the past ten years

shows that the energetic behavior of the turbulent mixing layer

(includi-i its rapid growth) can be explained by deterministic

mechanisms. The best known mechanism is merging of two or more p

vortices to form a larger vortex; when two vortices are involved

in this process, it is called pairing (Brown and Roshko, 1974,

Winant and Browand, 1974). Another mechanism is tearing in which

a vortex is torn apart and distributed to its neighbors (Moore
and Saffman, 1975).

The pairing mechanism is most clearly displayed in two

dimensional flows in which the merging vortex tubes are .

straight. However, the vortex tube structures seem to be

unstable with respect to three dimensional perturbations that

destroy their spanwise coherence. In particular, if a vortex

develops spanwise waviness, parts of it may pair with the vortex

ahead of it while other parts pair with the vortex behind it.

This process has been called local or helical pairing and was

observed in simulations by Cain et al (1981) and predicted

theoretically by Pierrehumbert and Widnall (1982). It produces a

three dimensional flow in which the pairing process is important

but not spanwise coherent. Another mechanism for producing three

dimensionality is the production of streamwise vorticity by the

stretching vortices. This process was observed in the laboratory 0

by Konrad (1976) and in simulations by Cain et al (1981) and

explained theoretically by Corcos and Lin (1984).

-4-
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* The mechanism of turbulence production in boundary layers is

quite different and not totally understood. In part, it involves -

' lifting of slow-moving vorticity-containing fluid from the

wall. As this fluid rises into the faster moving parts of the

'" flow the vorticity it contains is stretched; the result is

* 'hairpin' vortices. The hairpin vortices induce lift up of other

vortices from the surface. The combination of lifting and

stretching produces vertically oriented thin shear layers across

which there are strong gradients of the streamwise component of

the velocity. These shear layers then break down to form chaotic

motions. The entire process involves a great deal of momentum

transport and, therefore, Reynolds stress. The process was

described in detail by Kline et al (1967).

Homogeneous turbulent flows are often used as building

blocks in the development of turbulence models. Since we have

argued that turbulence models should reflect flow structure and

*that different models may be needed for regions with different

kinds of structure, it is important to know whether homogeneous

- . flows are like their inhomogeneous counterparts. For this -

*[.' reason, we decided to look for evidence of the mechanisms found -'.,

in inhomogeneous shear flows in homogeneous shear flow. To

accomplish this aim, we need some means of detecting the

mechanism of turbulence production.

T the two dimensional mixing layer described above, the
0

Reynolds stress occurs in the regions between merging vortices

and is coherent across the span of the flow. In three

" dimensional flows, such as that of Chandrsuda et al (1978), the

- velocity correlations still extend two or three layer thicknesses

* in the spanwise direction. This leads to a picture of these

flows as containing 'watermelon' or 'cigar' shaped vortices. -

Although the process has not been observed in the laboratory, it

is likely that these vortices interact in ways similar to those

observed in the two dimensional flow i.e. by merging and pairing.

-5-
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The search for structural coherence in the computed

homogeneous shear flows was carried out by constructing contour

plots of the instantaneous Reynolds stress and vorticity; an 0

interesting result is found. Figures 1 and 2 show the contours

of the Reynolds shear stress on two perpendicular planes at a

particular instant in a homogeneous shear flow; there is one

region of high Reynolds stress concentration which appears in

both views. This region does not have the 'watermelon' shape

that would be expected if the homogeneous flow is similar to the

* mixing layer; instead, it is approximately disc shaped. That is,

it is roughly circular in the x-y plane (whose normal is P

spanwise) and thin in the spanwise direction. Although we were

able to visualize only a small number of these Reynolds stress

-concentrations, all of them had this shape. No structures with

greater spanwise extent were found. Furthermore, these

* structures were found to become larger in size and more intense

with time but their shape did not change appreciably.

To study these regions in more detail, contour plots of the S _

*. fluctuating vorticity were made. Figures 3 and 4 demonstrate

- that the streamwise and normal vorticity is not concentrated at

- the same locations as the Reynolds stress but a short spanwise

distance to either side of them. From these figures, it appears 0

that the vorticity concentrations are inclined at some angle (our

guess based on a limited number of observations is 20-25*) with

. respect to the streamwise direction and lie on either side of the

Reynolds stress concentrations. As shown in Figure 5, the

. fluctuating spanwise vorticity demonstrates no tendency to form

" concentrations; this is further evidence that pairing plays no

significant role in this flow.

These results demonstrate that the pairing is not a

" significant mechanism in homogeneous shear flow. The pattern

• seen in the figures is more reminiscent of the structure seen in

the near-wall parts of boundary layers; this was described _

above. The primary mechanism of turbulence production in these

-6-
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regions involves the lifting of spanwise vorticity from the

surface, and subsequent stretching and formation of thin vertical

shear layers. In this process, the Reynolds stress is

concentrated between the legs of the stretched vortices where the

velocity generated by the legs of the vortex is such as to pump -

low velocity fluid upward. This mechanism gives rise to Reynolds

stress containing regions with thin spanwise extent and greater 0

extent in the other directions. We thus conclude that the

mechanism for turbulence production in homogeneous shear flow is

similar to, but simpler than, the mechanism responsible for

turbulence production in the near-wall region of wall-bounded -0

flows. Another important difference is that the homogeneous flow

is symmetric with respect to the upward and downward directions

and the mechanism is equally likely to pump fast moving fluid

downward as slow moving fluid upward. This suggests that .0

homogeneous shear flow may be an excellent tool for studying the

processes that occur in near-wall regions.

The process has been clarified further by the recent work of 0

Rogers and Moin (1984). They found that the total vorticity

(including the vorticity of the mean flow) lies predominantly at -

an angle of 45* with respect to the mean streamlines and is

associated with sinuous inclined vortices which fill a large part

of the flow. These structures are elongated by their self-

induced velocity and that of the mean flow. They induce an

upward flow of low momentum fluid or a downward flow of high

momentum fluid depending on the sense of their rotation and thus -

induce regions of significant Reynolds stress concentration. The

shape of the high Reynolds stress regions suggested by this model .-

are precisely of the type desribed in the preceeding paragraph.

Thus, the structure of a homogeneous shear flow has more in

common with wall bounded flow than mixing layers. Unless a

single model fitting all of these flows can be found (k- c models

have been used with some success for this purpose), models for

homogeneous shear flow should behave more like those appropriate

-7-
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to the inner layers of boundary layers than to those used in

mixing layers.
0

3. Length Scales

3.1 Turbulence Models

All turbulence models in current use require an estimate of

length scale of the turbulence. In this chapter, we shall

investigate some of these models. To test these models, we need

to have available the length scale which the models are intended

to represent. The appropriate length scale in a turbulent flow

is the size of the eddies responsible for the largest part of the

_ momentum transport. For a turbulent shear flow, in which the

important momentum flux is normal to the direction of the flow, .

the appropriate length scale is the integral scale which measures

the normal extent of the correlation of the streamwise velocity:

L, o.j(0 d-

1,2 fR(0,x2.0) dx2  (1)

where R11 is the two-point autocorrelation of the streamwise

velocity. In this chapter, we shall again concentrate on the

homogeneous shear flows. The reasons are two-fold: a) shear

flows are the most important flow class in applications, and b) . -

the data for the homogeneous shear flows cover a much longer

development time than those for other homogeneous flows, thus

allowing a much more complete study.

Before testing the models, let us introduce them. Because .'-

they receive the greatest amount of attention, we shall

- concentrate on models which use the Boussinesq eddy viscosity.'

concept; these approximate the Reynolds stress by:

au1  a.=- uu2v S + - 2H) (2)

i  sij -ax ax

-8- _
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where v is the eddy viscosity. Due to its importance in

engineering flows, we shall concentrate on the Reynolds shear

stress, u 0

Simple physical arguments, of which the Prandtl mixing

length argument is the simplest, lead to expressions for the eddy

viscosity of the form: S

v = C q1 (3)

where q is a velocity associated with the turbulence, usually 0

taken as the r.m.s. velocity, I is a length scale, and C is

a constant.

In mixing length models, the length scale is prescribed in .

". terms of some physical scale of the flow. For free shear flows,

it is some fraction of the width of the layer. In boundary

layers, a two layer model, which makes the mixing length

proportional to the distance from the wall in the near-wall

region and proportional to the boundary layer thickness far from

the wall, is used. For homogeneous flows, there is no

characteristic length scale. Nonetheless, we can use the data to

define a mixing length: .

Smi x  dU1 /dx2  (4)

and we shall study its behavior.

In two-equation models, partial differential equations for

turbulence quantities are solved along with those for the mean

flow. One equation provides the turbulence kinetic energy, k -Q

" (per unit mass); its square root is the velocity scale needed in

" Eq. (3). The second equation may describe the behavior of any of

* a number of other quantities. The standard modeling assumption

is that the length scale is related to the dissipation by:

-9-
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£ inq /e (5)

cf. Tennekes and Lumley (1972).

Expressions for length scales are needed in other current

turbulence models, including Reynolds stress models and algebraic

stress models. The accuracy with which Eq. (5) models the length

scale of Eq. (1) and the accuracy of the modeling used in the

dissipation equation are therefore of great interest; the first

issue will be studied in this chapter, the second issue will be

r.W taken up in the following chapter.

3.2 Behavior of the Length Scales

In this section, we will study the behavior of the integral

length scale defined by Eq. (1), which we take as the significant

length scale in sheared turbulence, and at models designed to

represent it. -

Table 4 gives the length scales defined in the preceeding

section as functions of time for the four homogeneous shear flow

cases; the mixing length defined by Eq. (4), the dissipation

length scale of Eq. (5), and the integral scale defined by Eq.

(1) are included. Figure 6 presents this data graphically for a

single case; the other cases are qualitatively similar and are

not shown. The behavior of the integral scale is somewhat

erratic in all cases; this is a consequence of computing the

integral scale by numerical integration of Eq. (1). The

correlation function in the integrand is negative for some values

of x2 so there is considerable numerical cancelation in the

integral, making the result susceptible to numerical errors.

** .* -* .*.-
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Figure 6 shows that the dissipation length scale is
* approximately proportional to the integral scale while the mixing

length behaves quite differently. As noted above, the mixing
length model is not appropriate for this flow. An explanation of

its behavior can be provided by rearranging Eq. (4) to yield:

mix UU 1 2(6)

As the ratio 1u /q is approximately constant (0.15) in nearly

all shear flows, Eq. (6) shows that the ratio of the mixing
length to the dissipation length scale is proportional to

2
Sq /e. The latter quantity is both the ratio of the time

required for the imposed shear to modify the flow to the time

scale of the turbulence and the ratio of production to
dissipation. Technological flows cover only a small range of

this parameter allowing the mixing length model to be applied to
them. Homogeneous flows, on the other hand, cover a much wider
range of this parameter, and the mixing length model cannot work W

as well for them.

As noted above, Fig. 6 demonstrates that the dissipation
length scale is approximately proportional to the integral

scale. However, this figure also shows the agreement to be only

* fair, so we attempted to fit the ratio of these length scales to
a function of the dimensionless parameters. There are three such

parameters in these flows--the total strain, St, the production-

dissipation ratio, P/c, and the Reynolds number, Re; the last is -

given in Table 4. The best fit was found when the Reynolds
number was used as the correlating parameter; the result is shown

in Fig. 7. Considerable fluctuation about the curve fit remains,
and can be ascribed, at least in part, to the inaccuracy of the
integral scale. Nonetheless, there does appear to be a
functional relationship and the curve fit shown in the figure can
be represented by:

3 10.7 Re-qL " (7)""-'
eL Re + 36.5

-11-
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This relationship may be of value in two-equation models for -

the inner region of wall-bounded flows. Note that, although Fig. *

(7) suggests that the ratio q3 /eL goes to zero with the Reynolds

number, there is nothing in the figure to suggest whether this is

correct or not, so caution is urged if this relationship is

applied in near-wall regions. Furthermore, the Reynolds numbers 'S

shown in Table 4 are quite large at the last few time steps so - -

the data at the last few time steps in each simulation should be

regarded with suspicion.

The length scales for the axisymmetric strain cases are

given in Table 5. We were unable to fit these data in the manner

applied to the sheared turbulence data. This is probably a

result of the maximum total strain in these cases (approximately

2) being much smaller than the total shear in the shear cases

(approximately 18); the small total strains are a consequence of

the numerical methods used in the full simulations. The initial

spectrum of all cases was the same although the initial Reynolds am..

numbers were varied over a factor of two by changing the

viscosity, and strain rates were varied over a wide range. If we

assume that there is a unique 'equilibrium' spectrum for each

turbulence Reynolds number and production/dissipation ratio, the

initial conditions cannot be appropriate as each simulation

develops, but this does not happen until the total strain is well

beyond the limit reached in these simulations. Hence, the strain

simulations are somewhat immature and we cannot use them to study S

the behavior of the length scales. . .-

Despite the difficulties with the strain flows, one can -

P- conclude that the length scale based on the dissipation is more

appropriate to homogeneous sheared turbulence than is the mixiy

length, and is likely to apply to a wider range of flows than ihe

mixing length.

-12- "° "
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4. Test of Models of the Dissipation Equation

4.1 Strategy."

In the preceding chapter, we found that, at least for

homogeneous shear flow, the length scale based on the dissipation

rate is roughly proportional to the length scale associated with •

the transport of momentum across the mean streamlines. This

indicates that the length scale estimate used in many turbulence

models is well chosen. However, because the study of the length

scales was based on the results of full simulations, we were able .

to use the exact dissipation in the analysis. In model

calculations of turbulent flows, the dissipation is defined by

the solution of a partial differential equation. Although an
exact equation governing the rate of dissipation of turbulence .O

can be derived, it contains correlations of fluctuating velocity
components of order higher than two. These correlations cannot

be evaluated and models for them are necessarily uncertain.

Consequently, the models used in the dissipation equation are

empirical, making them the weakest points in current turbulence

models.

For homogeneous turbulent flows, the commonly used model

dissipation equation is:

~2
d C2  -+ C PC (8)

S

where k is the turbulence kinetic energy and P is the rate of
production of turbulence kinetic energy given by:

P =- i S (9)

where Sij is the strain rate defined by Eq. (2), and C1  and

C2 e are model parameters that are usually treated as constants.
20
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In this chapter, we shall use the full simulation results to

evaluate both the validity of this model and the parameters it

contains. For this purpose, we need the dissipation and its time

derivative. The dissipation is computed in the full simulations

and is available; its time derivative is obtained by

differentiation. The differentiation was accomplished by spline
-0

fitting the dissipation; this method was preferred over finite

differencing because the data points are widely spaced. The

derivatives obtained in this way contain considerable uncertainty

which carries over to the model constants estimated from them.

Despite the uncertainty, we should be able to discern trends and 0

thus shed light on a number of important issues connected with

modeling the dissipation equation.

For purposes of analyzing the data, it is useful to rewrite

Eq. (8) in the form:

k d c .+c(0
cP(dt 2eP l

which suggests that a plot of (k/eP)dc/dt and c/P, should be a

straight line with slope C2  and intercept C1 . Such plots

provide a stringent test of the model. If the model is valid,

the data points will fall on a straight line, and the constants

can be extracted by least squares analysis, allowing study of

some of the issues raised earlier. We chose to rearrange Eq. (8)

so that the data are plotted against c/P rather than P/c, the

parameter used by most modelers, because this emphasizes the

small P/e data which is more relevant to engineering flows.

In particular, we can compare the parameters obtained from

the least squares fit with the generally accepted values. We can

also determine whether the same parameter values apply to all

homogeneous flows and thus, whether a variety of flows can be fit

with a single model. Furthermore, we can determine whether the

-14-

°°° . .. .. .. -' " .°

. ." . -" ."-" '". '"-."" '.""" . . -" ••." " ." '" ' . _' - ." ". "c i " '-' . . ." -. -' ''



L

constants are independent of the dimensionless variables or

not. As noted earlier, the principal dimensionless variables arepr
the Reynolds number, k2 /cv, the ratio of production to

dissipation, P/e, (this is also the ratio of the time scale of

the imposed strain to the turbulence time scale) and the

dimensionless time, St. The tests will occupy the remainder of

this chapter.

4.2 Reduced Data

The quantities necessary for analyzing models of the S

dissipation equation were obtained by reducing the data supplied

by Lee and Reynolds (1984) and Rogallo (1981). The production

was calculated in two ways. The first method is essentially

exact; it uses Eq. (9) and the full simulation data for the

Reynolds stresses to compute the rate of turbulence energy

production. This approach takes the model quite literally.

However, in applications, the production is not, and cannot, 0

be computed this way because the exact Reynolds stresses are not

available. Instead, one must use the model Reynolds stresses

given by Eq. (2). Eq. (9) is then replaced by:

BC kP = Si Si (11) ""

Both methods of computing the production will be used.

The proposed tests require the time derivative of the

dissipation. This quantity was obtained by spline fitting the

dissipation as a function of time for each run and

differentiating the result. The wide spacing of the times at

which the data were provided (a consequence of the deforming

grids used in the full simulations) results in large uncertanties

in the computed derivatives. Because they are particularly

°,- -15-. .-.."
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uncertain, the derivatives at the first and last time steps of

each run were not used in this analysis. The same values of

de/dt were used in both approaches to model testing; this choice
was made on the basis of two arguments: 1) these are the only.".. :..
data available for this quantity and 2) an accurate model would

yield the correct dissipation, and therefore, the correct time

derivative.

The derived data required for the analysis of dissipation

models are given in Tables 6-8. Some of the differences between S
the modeled quantities and the ones obtained from the full

simulations are quite large; for the strain flows this is due to

a combination of the high strain rates and the short time span of .

the simulations. It is not surprising that these differences

produce significant differences in the results presented below.

4.3 Analysis of the Data

The derived data were used to study the validity of the

model represented by Eq. (8). The results for (k/eP)dc/dt were

plotted vs. c/P for each of the three homogeneous turbulent

flows. Least squares straight lines were fit to the data derived

from each individual run and to the combined data for each

flow. The data points based on the exact production, the least

squares fits to those data, and the prediction of the standard

model (for which the constants are C = 1.44 and C 2 1.92) are

shown for each of the three flows in Figures 8-10,

respectively. Figures 11-13 give similar results based on the

model production given by Eq. (1i). The parameters obtained from

the least squares fits for each run and the complete data set for

each flow are given in Table 9.

-16-9.
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A few conclusions can be drawn immediately from these

figures. There is considerable scatter in the data and, although

I straight lines fit the data reasonably well, the resulting .

parameters contain considerable uncertainty; we cannot estimate

this uncertainty accurately but it is probably +.25 for each -.-

parameter. The uncertainty is demonstrated by the fact that the

standard model fits the data nearly as well as the least squares 6

lines in Figures 8 and 9, despite significant differences in the

parameters. Thus, the parameter values extracted from the full

simulation data should not be accepted without allowance for the

uncertainty.

The scatter in the data can be attributed to at least three

separate sources. The first is the uncertainty in the time

derivative of the dissipation; this uncertainty was shown earlier

to be a consequence of differentiating data at widely spaced time

steps at which the raw data were available. A second source of

uncertainty is the relative immaturity of the flows, especially

the strain flows. All simulations began with isotropic .

turbulence as an initial condition; in others, the isotropic -

turbulence was allowed to develop for some time. Considerable

time is required for the flows to display the characteristics of '

a fully developed strain flow. Unfortunately, the simulations -

must be stopped when the length scales become too large for the

computational region. As a result, the simulations may contain

only a small span of developed flow, most of the flow is

transitional. A third cause of uncertainty, which may be related

to the preceding one, is the tendency of individual runs to

follow trajectories that differ considerably from both the least

square fits to the full data sets and the standard model. This
is reflected by wide scatter among the parameters derived from .

individual runs and their differences from the values derived

from the full data sets. Individual run trajectories are

illustrated in Figure 14, which is identical to Figure 8 except

for the inclusion of lines representing individual runs; the

lines representing the overall fit and the standard model have

-17-



been omitted for clarity.

Although the data based on the modeled production show no

more scatter than those based on the exact production, the

parameters obtained by fitting these data show both wider scatter

among themselves and greater deviation from the standard

values. This is probably due to the immaturity of the flows and

the inability of the model to represent the production well in

the early region of highly strained flows. We shall therefore

work exclusively with the data derived from the full simulations

* in the remainder of this report.

From Figures 8 and 9, we see that the standard model fits

the data for plane strain and shear reasonably. However, Figure V -

10 shows that the line representing the standard model lies well

outside the data band for axisymmetric strain. Especially, the

slope of the standard model line (governed by the parameter

C ) is too large. The inability of the standard model to fit

the data for axisymmetric flows may be related to the difficulty

that modelers have had in finding a single model capable of

fitting both plane and axisymmetric jets. When models derived

for plane flows are applied to axisymmetric flows, the rates of

growth of the predicted flows are incorrect. This result argues

for caution in applying a single model to a variety of flows; .-

these results are evidence of the need for zonal models. This

answers one of the key questions raised at the beginning of this

report.

From Figures 8-13 we also note that, although the data

scatter considerably about the straight line fits, there is no

indication that the relationship between (k/cP)dc/dt and e/P is

anything other than linear. In other words, there is no reason

to expect the parameters to depend on P/c.

.. 
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The scatter in the data might be reduced and the fit to the

model might be improved by making the model 'constants'--we have

called them parameters above and will continue to do so--

functions of the nondimensional variables. The argument of the

preceding paragraph shows dependence of the parameters on P/C to

be improbable. We considered the possibility that the variation

in the parameters is due to Reynolds number dependence. However,

the Reynolds numbers are large enough that the model parameters . -

should not depend on this parameter. An attempt to fit the

parameters for the plane strain case as functions of the Reynolds

* . number produced an irregular and stronger than expected

- functional dependence, so the possibility of Reynolds number

dependence of the parameters was rejected. The remaining

possibility is that the parameters are functions of the

nondimensional time St. We shall explore this next.

To test the possibility that the model parameters are

functions of the total strain, St, we sorted the data from the ---

various runs (Tables 6-8) according to the value of the total

strain. For each total strain, a least squares fit to the data

was made; the results are presented in Table 10. In this

process, some of the data were not used because there were not

enough data for all values of the total strain. For this reason,

the overall values presented in Table 10 may differ from those in

Table 9. The data for the plane strain cases showing the lines

of constant total strain are plotted in Figure 15; the data for

different total strains clearly fall on lines of different slope

but the same intercept indicating that, for this flow at least,

CIl may be taken as constant but C is a function of St. This
conclusion is borne out by the least squares parameters for this

flow presented in Table 10.

-19-
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The results for the shear flow cases are shown in Figure

* 16. For this flow, there is no indication that the data for '

different St require different values of the parameters. Indeed,

the derived parameters given in Table 10 show considerable

* scatter and no discernable trend. On closer examination, one

sees that the data for each St cover a very narrow range of

P/c , indicating that the production develops more quickly in

the shear flow than in the strain flows; this characteristic has

been noted by others (eg., Tzuoo et al, 1984). For sheared

turbulence, the parameters can be regarded as constants.

For the axisymmetric strain flow cases, the lines of

constant St are shown in Figure 17. Notice that the overall fit

is especially influenced by the data for the smallest value of r A

St, the data set with the largest ratio of dissipation to

production (see Table 8). Since this data set represents the

" least mature flows, we decided to eliminate it from the overall

analysis and redo the overall fit. The result is shown in Fig.

18; the constants are given in Table 10. We see that, in

contrast to the case of sheared turbulence, the data can be fit

- with the standard value of C 2 , but the value of C needs to

*be changed to fit these data.

To sum up, we find that a single model of the dissipation

equation cannot fit the data for a variety of different kinds of

strain. For turbulence undergoing plane strain, dependence of

the parameter C on the total strain St is required. On the

other hand, the sheared turbulence data can be fit with constant

parameters; the standard parameters do well in this case.

Finally, for turbulence undergoing axisymmetric strain, constant

parameters appear to suffice but a value of the parameter

. C1  larger than the total strain is small in both strain cases;

* the resulting parameters may be inaccurate for these cases.
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5. Conclusions

We have investigated a number of issues connected with

turbulence and its modeling by using the results of full

simulations of homogeneous turbulent flows as the database. One

of the principal conclusions reached in this study is that it is

indeed possible to use full turbulence simulation results (and,

presumably, large eddy simulation results as well) to study both

the physics of turbulence and turbulence modeling. A principal

recommendation resulting from this study is that such simulations

be used when feasible for the purposes to which they have been..

put in this study; combination of simulation data with

experimental data would be even more desirable. The development

of new methods of investigating the data would be valuable and is
therefore highly recommended.

Turning to specific conclusions to be drawn from this study,

we have shown that, the mechanism of turbulence production in

homogeneous sheared turbulence resembles the mechanism of the

near-wall part of a boundary layer more than the mechanism of the

turbulence production in the mixing layer. Despite this, the

standard model dissipation equation that is often used for

inhomogeneous shear flows works well in the homogenous flow. It .
thus appears that it is possible to fit a wide range of shear

flows, which have greatly different physical behavior, with a

single turbulence model. We do not understand the reason why

this is so, but it is very encouraging.

The length scale based on the dissipation that is commonly

used to model the integral scale works quite well for homogeneous

shear flow. However, an adjustment to the usual formula needs to .

be made at low Reynolds numbers. The mixing length fits the

integral scale well only over a narrow range of the ratio of

production to dissipation and should be used only for

'equilibrium' flows which meet this criterion. For the strain

-21-
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flows, the limited range of total strain for which data were

available made it impossible to study the behavior of the length

.. scales in a satisfactory manner.

We found that the model parameters need to be different for

each class of flow. In particular, the standard model is

satisfactory for sheared turbulence but not the strain flows.

For the case of plane strain, it appears to be necessary to make

the parameter C2 € of the modeled dissipation equation a

function of the total strain. On the other hand, the

axisymmetric strain cases require a change in the parameter

CI; a constant value appears to be satisfactory. The limited

range of total strain that we were able to study suggests that

this portion of the work be repeated when data covering a broader

range of total strain become available.
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Table I

Data for Homogeneous Turbulence Undergoing Plane Strain
From Lee and Reynolds (1984)

Time Kinetic Dissipation Turbulence Components
Ene5 gy

T q C U1 U2 U 3

S = 0.65
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.5385 0.0771 0.0354 0.0263 0.0326 0.0182
1.0710 0.0610 0.0208 0.0205 0.0309 0.0097
1.6019 0.0586 0.0156 0.0192 0.0330 0.0064 . -
2.1329 0.0639 0.0138 0.0205 0.0386 0.0048

S =1.3
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.2700 0.1002 0.0558 0.0346 0.0418 0.0238
0.5366 0.0911 0.0438 0.0318 0.0450 0.0143 - .....

0.8033 0.0944 0.0389 0.0328 0.0518 0.0098
1.0670 0.1074 0.0383 0.0371 0.0630 0.0074 -

S =2.6
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.1366 0.1165 0.0729 0.0406 0.0483 0.0276
0.2685 0.1177 0.0725 0.0426 0.0567 0.0184
0.4009 0.1304 0.0770 0.0482 0.0692 0.0130
0.5309 0.1542 0.0853 0.0574 0.0870 0.0097

S = 5.2
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.0683 0.1266 0.0847 0.0443 0.0522 0.0301
0.1354 0.1372 0.1001 0.0510 0.0649 0.0213
0.2013 0.1602 0.1242 0.0623 0.0824 0.0155
0.2670 0.1970 0.1558 0.0782 0.1072 0.0116

S = 25
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.0155 0.1370 0.0985 0.0485 0.0570 0.0315
0.0285 0.1581 0.1382 0.0605 0.0734 0.0242
0.0418 0.1953 0.2133 0.0804 0.0963 0.0186
0.0558 0.2554 0.3423 0.1106 0.1308 0.0140

S =00
0.0000 0.1304 0.0847 0.0441 0.0424 0.0439
0.0034 0.1368 0.0970 0.0480 0.0555 0.0333
0.0078 0.1704 0.1646 0.0669 0.0799 0.0236
0.0112 0.2169 0.2787 0.0920 0.1065 0.0183
0.0136 0.2637 0.4145 0.1166 0.1319 0.0153
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Table 2
Data for Homogeneous Shear Flow

From Rogallo (1981)

Time Kinetic Dissipation Reynolds
Energy Shear

Stress

t k - --u-/q
Case BSH9 S = 28.28 2

0.0707 8.2459 130.8352 -0.1544
0.1414 6.2240 64.8076 -0.1693
0.2121 6.5075 48.8456 -0.1675
0.2828 7.7987 48.2009 -0.1648
0.3536 9.8547 55.4535 -0.1603
0.4243 12.5860 69.1574 -0.1594
0.4950 16.0822 87.8498 -0.1602
0.5657 20.6653 112.7094 -0.1563
0.6364 25.7101 146.5232 -0.1522

Case BSH10 S = 28.28

0.0707 5.1572 95.1088 -0.1731
0.1414 3.9861 42.6498 -0.1785
0.2121 4.1558 33.6941 -0.1674
0.2828 4.7527 32.0710 -0.1612
0.3536 5.7482 33.6144 -0.1557 - "
0.4243 7.2030 38.2974 -0.1541
0.4950 9.3365 45.0482 -0.1550 ..

Case BSH11 S = 56.56

0.0354 11.2136 261.3250 -0.1788
0.0707 11.4356 198.7566 -0.1818
0.1061 13.1627 187.9649 -0.1679
0.1414 15.7866 197.7942 -0.1614
0.1768 19.8112 221.9700 -0.1624
0.2121 25.9920 265.9385 -0.1607
0.2475 34.7631 337.6216 -0.1613

Case BSH12 S = 20

0.1000 9.1089 61.3060 -0.1498
0.2000 8.5069 55.6731 -0.1586
0.3000 8.7937 47.5697 -0.1593
0.4000 9.9933 46.5868 -0.1595
0.5000 12.0217 49.3771 -0.1564
0.6000 14.7169 60.0536 -0.1512

.
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Table 3
Data for Homogeneous Turbulence Undergoing Axisymmetric

Strain From Rogallo (1981)

Reynolds
Kinetic Stress

Time Energy Dissipation Anisotropy

T q2 E Bl B22=B33
S = 10
0.0236 4.3901 64.3063 -0.0510 0.0255
0.0468 3.3578 45.2619 -0.1146 0.0573
0.0700 2.7549 33.3630 -0.1666 0.0833
0.0941 2.4018 25.4876 -0.2068 0.1034
0.1160 2.2306 21.0812 -0.2333 0.1166
0.1387 2.1476 18.4767 -0.2538 0.1269

S = 20

0.0125 5.1941 80.0632 -0.0550 0.0275
0.0241 4.6231 71.1713 -0.1202 0.0601
0.0359 4.2818 66.4785 -0.1752 0.0876
0.0462 4.1166 63.9339 -0.2118 0.1059
0.0586 4.0338 61.6251 -0.2442 0.1221
0.0698 4.0462 60.1506 -0.2654 0.1327

S =40

0.0061 5.7336 90.6299 -0.0527 0.0263
0.0120 5.5530 91.1385 -0.1219 0.0610
0.0185 5.6178 100.2140 -0.1859 0.0929
0.0236 5.8010 111.7112 -0.2239 0.1120
0.0293 6.1111 128.1692 -0.2560 0.1280
0.0352 6.4979 146.3656 -0.2786 0.1393

s= 5

0.0466 3.2022 41.7351 -0.0503 0.0251
0.0929 1.9867 20.1809 -0.1145 0.0573
0.1397 1.4483 11.2151 -0.1659 0.0829
0.1866 1.1944 7.3673 -0.2020 0.1010
0.2332 1.0658 5.6087 -0.2275 0.1138
0.2791 0.9988 4.7363 -0.2467 0.1233

S 10

0.0233 2.7378 43.1753 -0.0643 0.0321
0.0481 2.0563 27.7339 -0.1354 0.0677
0.0695 1.7366 20.7865 -0.1833 0.0916
0.0940 1.5279 16.5394 -0.2224 0.1112
0.1170 1.4130 14.4098 -0.2485 0.1243
0.1387 1.3455 13.2673 -0.2671 0.1335
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Table 3 concluded

S=20

0.0120 3.2893 56.9968 -0.0651 0.0326 :
0.0240 2.8856 48.2453 -0.1349 0.0675
0.0359 2.6675 43.4551 -0.1912 0.0956 -
0.0477 2.5635 41.0395 -0.2323 0.11L62 ~
0.0586 2.5316 40.3360 -0.2592 0.1296
0.0696 2.5371 40.7194 -0.2788 0.1394

S =40

0.0065 3.6322 66.2693 -0.0705 0.0352
0.0131 3.5055 66.6514 -0.1464 0.0732
0.0185 3.5308 70.9752 -0.1984 0.0992
0.0236 3.6329 77.4141 -0.2364 0.1182
0.0296 3.8222 86.9958 -0.2686 0.1343
0.0349 4.0319 96.9658 -0.2881 0.1441

S=5

0.0475 1.9472 25.4329 -0.0681 0.0340
0.0925 1.2536 12.3167 -0.1313 0.0657 *.-

0.1406 0.9224 7.2250 -0.1808 0.0904 :
0.1865 0.7585 5.1039 -0.2139 0.1069
0.2326 0.6618 4.0033 -0.2384 0.1192
0.2774 0.6023 3.3940 -0.2573 0.1287

-28-.



Table 4

Length Scales in Sheared Turbulence

Time Reynolds Mixing Integral Dissipation
Number Length Scale Length

Ll2

Case BSH9 •

0.0707 73.50 0.0564 0.0799 0.5119
0.1414 84.53 0.0513 0.1067 0.6777
0.2121 122.61 0.0522 0.1260 0.9613
0.2828 178.45 0.0567 0.1537 1.2780 -

0.3536 247.67 0.0628 0.1549 1.5779 .

0.4243 323.93 0.0708 0.1784 1.8262
0.4950 416.36 0.0802 0.1584 2.0765
0.5657 535.85 0.0899 0.2277 2.3575
0.6364 638.00 0.0989 0.2665 2.5165

Case BSH10 0.

0.0707 19.77 0.0472 0.0981 0.3483

0.1414 26.34 0.0422 0.1195 0.5278
0.2121 36.24 0.0417 0.1487 0.7112
0.2828 49.80 0.0438 0.1638 0.9138 . -

0.3536 69.51 0.0473 0.1535 1.1596 O

0.4243 95.79 0.0527 0.1841 1.4277
0.4950 136.83 0.0601 0.2210 1.7912

Case BSH11
0.0354 34.02 0.0708 0.0635 0.4064 "'
0.0707 46.52 0.0721 0.0575 0.5503 ..
0.1061 65.18 0.0743 0.1182 0.7186
0.1414 89.09 0.0798 0.1347 0.8969 "
0.1768 125.03 0.0897 0.1297 1.1236
0.2121 179.63 0.1022 0.1489 1.4094
0.2475 253.10 0.1184 0.1516 1.7171

Case BSH12

0.1000 270.68 0.0584 0.1124 1.2683
0.2000 259.97 0.0581 0.1485 1.2605
0.3000 325.12 0.0592 0.1643 1.5505
0.4000 428.73 0.0631 0.2264 1.9180 *
0.5000 585.38 0.0686 0.2833 2.3876
0.6000 721.32 0.0746 0.2687 2.6591
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Table 5

Length Scales in Axisymmetric Strained Turbulence

Total Reynolds Mixing Lengths Integral Scales Dissipation
Strain Number 1 2 114, 22,2 Mean Length .-. "

Case CD11 S = 10

0.2363 42.38 0.1113 0.2510 0.1068 0.1122 0.1913 0.1430
0.4684 35.23 0.0857 0.2291 0.1018 0.1222 0.2006 0.1359
0.7002 32.17 0.0678 0.2143 0.0931 0.1317 0.2082 0.1371
0.9407 32.01 0.0551 0.2048 0.0819 0.1392 0.2132 0.1460
1.1599 33.38 0.0472 0.2004 0.0730 0.1432 0.2153 0.1580
1.3870 35.30 0.0413 0.1988 0.0666 0.1427 0.2125 0.1703

Case CD12 S = 20

0.2499 47.66 0.0601 0.1369 0.1047 0.1074 0.1845 0.1479
0.4816 42.47 0.0496 0.1349 0.0993 0.1105 0.1852 0.1397
0.7182 39.00 0.0411 0.1343 0.0912 0.1124 0.1833 0.1333
0.9243 37.48 0.0354 0.1345 0.0824 0.1136 0.1806 0.1306
1.1715 37.34 0.0300 0.1355 0.0717 0.1142 0.1767 0.1315
1.3953 38.49 0.0262 0.1373 0.0636 0.1135 0.1727 0.1353

Case CD13 S = 40

0.2426 51.30 0.0317 0.0718 0.1040 0.1048 0.1811 0.1515
0.4817 47.85 0.0271 0.0740 0.1001 0.1044 0.1784 0.1436
0.7413 44.54 0.0228 0.0774 0.0941 0.1018 0.1720 0.1329
0.9429 42.60 0.0199 0.0804 0.0880 0.0992 0.1656 0.1251
1.1739 41.21 0.0172 0.0840 0.0802 0.0963 0.1580 0.1179
1.4066 40.80 0.0149 0.0876 0.0736 0.0924 0.1500 0.1132

Case CD4 S =5

0.2330 34.75 0.1904 0.4286 0.1122 0.1224 0.2063 0.1373
0.4643 27.66 0.1319 0.3524 0.1113 0.1457 0.2342 0.1388
0.6983 26.45 0.0985 0.3106 0.1046 0.1635 0.2538 0.1554
0.9328 27.39 0.0792 0.2881 0.0955 0.1718 0.2611 0.1772
1.1662 28.64 0.0672 0.2761 0.0950 0.1762 0.2667 0.1962
1.3955 29.79 0.0588 0.2701 0.0766 0.1782 0.2634 0.2107

Case CD21 S= 10

0.2326 12.28 0.0858 0.2001 0.1366 0.1465 0.2482 0.1049
0.4805 10.78 0.0638 0.1816 0.1362 0.1625 0.2671 0.1063
0.6953 10.26 0.0510 0.1718 0.1259 0.1714 0.2731 0.1101
0.9404 9.98 0.0412 0.1648 0.1093 0.1793 0.2761 0.1142 *.

1.1705 9.80 0.0396 0.1608 0.0941 0.1826 0.2798 0.1166
1.3866 9.65 0.0299 0.1585 0.0835 0.1835 0.2726 0.1176 •
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Table 5. Concluded

ICase CD22 S =20

0.2402 13.42 0.0470 0.1097 0.1316 0.1380 0.2354 0.1047
0.4796 12.20 0.0378 0.1075 0.1297 0.1435 0.2408 0.1016
0.7171 11.58 0.0308 0.1070 0.1237 0.1476 0.2426 0.1003 --

0.9550 11.32 0.0254 0.1073 0.1134 0.1456 0.2351 0.1000
1.1720 11.24 0.0217 0.1083 0.1018 0.1493 0.2344 0.0999
1.3911 11.18 0.0186 0.1095 0.0907 0.1481 0.2282 0.0992

Case CD23 S =40

0.2605 14.08 0.0244 0.0579 0.1290 0.1336 0.2288 0.1045
0.5223 13.04 0.0202 0.0597 0.1272 0.1334 0.2275 0.0985
0.7384 12.42 0.0173 0.0618 0.1244 0.1315 0.2237 0.0935

* 0.9431 12.06 0.0148 0.0640 0.1202 0.1289 0.2184 0.0894
1.1843 11.87 0.0124 0.0668 0.1136 0.1254 0.2106 0.0859
1.3959 11.85 0.0107 0.0694 0.1069 0.1222 0.2032 0.0835

Case CD24 s= 5

0.2373 10.54 0.1437 0.3383 0.1469 0.1637 0.2742 0.1068
0.4623 9.02 0.1006 0.2829 0.1458 0.1896 0.3052 0.1140
0.7031 8.33 0.0750 0.2501 0.1311 0.2080 0.3220 0.1226
0.9327 7.97 0.0602 0.2312 0.1144 0.2194 0.3307 0.1294 -

j 1.1631 7.74 0.0501 0.2189 0.1021 0.2265 0.3362 0.1345
1.3872 7.56 0.0428 0.2110 0.0955 0.2306 0.3398 0.1377
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Table 6
Derived Data--Plane Strain

Time dc, /dt Exact quantities Model quantites
T Prod. c_/p (k/eP)dc/dt Prod. (k/e P)de/dt.

S = .65

0.538 -0.04170 0.009 3.785 -4.868 0.026 1.383 -1.778
1.071 -0.01308 0.014 1.514 -1.393 0.027 0.766 -0.705
1.602 -0.00674 0.017 0.900 -0.734 0.034 0.464 -0.378

S = 1.3

0.270 -0.06303 0.023 2.381 -2.415 0.109 0.510 -0.517
0.537 -0.02643 0.040 1.099 -0.691 0.115 0.379 -0.238
0.803 -0.00997 0.055 0.713 -0.222 0.139 0.279 -0.087

S =2.6

0.137 -0.02663 0.054 1.360 -0.397 0.453 0.161 -0.047
0.269 0.019325 0.099 0.729 0.158 0.465 0.156 0.034
0.401 0.048409 0.146 0.527 0.281 0.538 0.143 0.076

S =5.2

0.068 0.150536 0.115 0.739 0.981 1.842 0.046 0.061
0.135 0.308486 0.227 0.441 0.932 1.831 0.055 0.115
0.201 0.422935 0.348 0.357 0.784 2.012 0.062 0.136

S =25

0.015 1.899254 0.637 0.155 2.074 42.883 0.002 0.031
0.028 4.046675 1.229 0.112 1.884 40.700 0.003 0.057
0.042 7.270794 1.943 0.110 1.713 40.226 0.005 0.083

S =100

0.003 6.246672 2.214 0.044 1.990 694.221 .000 0.006
0.008 21.51598 5.623 0.029 1.980 634.706 .000 0.018
0.011 46.55979 8.820 0.032 2.054 607.615 .000 0.030
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Table 7

Derived Data--Sheared Turbulence

* Time,t dc_/dt Exact Quantities Model Quantities
Prod. C/P (k/cP)dc/dt Prod. c/P (k/cP)de/dt

S =28.28

0.141 -517.5 59.60 1.087 -0.834 86.08 0.753 -0.577
0.212 -58.3 61.65 0.792 -0.126 124.84 0.391 -0.062
0.283 46.4 72.70 0.663 0.103 181.70 0.265 0.041
0.354 153.2 89.37 0.621 0.305 252.19 0.220 0.108
0.424 229.8 113.50 0.609 0.369 329.84 0.210 0.127
0.495 301.9 145.71 0.603 0.379 423.95 0.207 0.130
0.566 410.3 182.74 0.617 0.412 545.62 0.207 0.138

S = 28.28

0.141 -367.9 40.25 1.060 -0.854 53.65 0.795 -0.641
0.212 -18.2 39.36 0.856 -0.057 73.81 0.457 -0.030
0.283 -8.2 43.33 0.740 -0.028 101.42 0.316 -0.012
0.354 47.5 50.63 0.664 0.161 141.55 0.237 0.057
0.424 82.2 62.80 0.610 0.246 195.08 0.196 0.079

S =56.56

0.071 -926.7 235.15 0.845 -0.227 378.98 0.524 -0.141
0.106 94.7 250.00 0.752 0.027 530.93 0.354 0.012
0.141 466.1 288.27 0.686 0.129 725.75 0.273 0.051
0.177 926.4 364.07 0.610 0.227 1018.47 0.218 0.081
0.212 1610.7 472.56 0.563 0.333 1463.26 0.182 0.108

S = 20

0.200 -83.1 53.96 1.032 -0.235 93.59 0.595 -0.136
0.300 -50.2 56.02 0.849 -0.166 117.04 0.406 -0.079
0.400 11.2 63.75 0.731 0.038 154.34 0.302 0.016
0.500 75.4 75.20 0.657 0.244 210.74 0.234 0.087
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Table 8

0,Derived Data-- Axisymmetric Strain

Exact Quantites Model Quantities

* Time,t dc/at Prod. C/P (k/cP)dc/dt Prod. c/P (k/cP)dc/dt

S=10 .

*0.024 -989.60 3.357 19.159 -20.128 8.092 7.947 -8.349
0.047 -651.98 5.774 7.840 -8.378 6.726 6.729 -7.191
0.070 -404.49 6.883 4.847 -4.852 6.142 5.432 -5.438
0.094 -255.05 7.449 3.422 -3.227 6.111 4.171 -3.933 .

0.116 -154.72 7.806 2.701 -2.097 6.373 3.308 -2.569
0.139 -74.61 8.176 2.260 -1.061 6.740 2.741 -1.287

S =20

0.012 -977.06 8.567 9.346 -7.399 36.393 2.200 -1.742
1 0.024 -558.03 16.666 4.270 -2.175 32.433 2.194 -1.118 .

0.036 -287.58 22.503 2.954 -0.823 29.785 2.232 -0.622
0.046 -215.12 26.161 2.444 -0.529 28.626 2.233 -0.484.

* 0.059 -158.06 29.553 2.085 -0.350 28.517 2.161 -0.363
0.070 -105.39 32.215 1.867 -0.220 29.395 2.046 -0.241 -

S = 40

0.006 -587.15 18.124 5.000 -2.049 156.698 0.578 -0.237
0.012 757.47 40.167 2.244 1.136 146.165 0.624 0.316
0.019 1947.40 62.647 1.600 1.743 136.047 0.737 0.802 -

0.024 2594.90 77.945 1.433 1.729 130.137 0.858 1.035
0.029 3027.70 93.873 1.365 1.538 125.875 1.018 1.147
0.035 3228.70 108.635 1.347 1.319 124.621 1.174 1.150

S=5

0.047 -622.70 1.208 34.549 -39.551 1.658 25.166 -28.809
0.093 -309.51 1.707 11.825 -17.854 1.320 15.286 -23.0800
0.140 -114.13 1.802 6.225 -8.181 1.262 8.884 -11.675 7
0.187 -54.80 1.809 4.072 -4.910 1.307 5.636 -6.797*
0.233 -25.70 1.819 3.084 -2.686 1.367 4.103 -3.573
0.279 -12.36 1.848 2.563 -1.410 1.422 3.332 -1.833

S= 10S

* 0.023 -800.14 2.640 16.355 -19.220 4.688 9.211 -10.824
0.048 -445.70 4.178 6.639 -7.910 4.116 6.737 -8.028
0.070 -232.35 4.774 4.354 -4.066 3.917 5.307 -4.956
0.094 -123.54 5.097 3.245 -2.239 3.811 4.340 -2.995
0.117 -68.63 5.267 2.736 -1.278 3.741 3.852 -1.799
0.139 -37.15 5.390 2.462 -0.699 3.684 3.601 -1.023
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Table 8 Concluded

S =20

0.012 -910.80 6.426 8.869 -8.179 20.501 2.780 -2.564
0.024 -551.28 11.682 4.130 -2.822 18.640 2.588 -1.769
0.036 -285.76 15.298 2.841 -1.147 17.685 2.457 -0.992
0.048 -124.98 17.869 2.297 -0.437 17.294 2.373 -0.451
0.059 -11.71 19.683 2.049 -0.037 17.160 2.351 -0.043
0.070 81.65 21.218 1.919 0.240 17.073 2.385 0.298 - -

S = 40

0.007 -371.68 15.354 4.316 -1.327 86.002 0.771 -0.237
0.013 488.41 30.794 2.164 0.834 79.647 0.837 0.323
0.018 1069.00 42.032 1.689 1.265 75.878 0.935 0.701
0.024 1424.90 51.527 1.502 1.298 73.649 1.051 0.908
0.030 1748.00 61.601 1.412 1.247 72.547 1.199 1.059
0.035 2020.60 69.705 1.391 1.205 72.426 1.339 1.160

s5

0.047 -397.29 0.994 25.578 -30.590 1.006 25.274 -30.277
0.092 -185.72 1.235 9.977 -15.312 0.861 14.302 -21.949
0.141 -58.96 1.251 5.777 -6.019 0.795 9.089 -9.469
0.187 -33.52 1.217 4.195 -4.095 0.761 6.708 -6.547
0.233 -17.22 1.183 3.383 -2.405 0.738 5.421 -3.855 _

0.277 -9.97 1.162 2.920 -1.522 0.721 4.705 -2.452 6 _
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Table 9
Derived Model Constants

Strain Model Constants based on:
Rate Actual Production Model Production

Ce2 c le 2-

Plane Strain .

0.65 0.683 1.459 0.400 1.555
1.30 0.740 1.323 0.451 1.880
2.60 0.737 0.830 0.981 6.258
5.20 0.681 -0.426 -0.155 -4.799

25.00 1.074 -6.500 -0.005 -16.854
100.00 2.053 1.301 -0.003 -72.355
Overall 1.768 1.844 0.137 1.261

Sheared Turbulence

20.00 0.970 1.224 0.204 0.603 5
28.28 1.874 2.506 0.399 1.281
28.28 1.735 2.343 0.368 1.192
56.56 1.399 1.883 0.243 0.711
Overall 1.580 2.093 0.354 1.099

Axisymetric Strain

5.00 -0.290 1.169 0.575 1.269
5.00 1.052 1.278 2.746 1.389
10.00 0.765 1.102 1.938 1.332
10.00 1.953 1.317 4.765 1.762
20.00 1.825 0.977 6.365 3.272 _

20.0 2.341 1.196 14.528 6.206
40.00 3.083 1.007 -1.008 -2.056.
40.00 2.634 0.904 -1.587 -2.191
overall 2.276 1.277 2.101 1.352.

Standard Model _

1.92 1.44

-36-



Table 10
Derived Model Constants

Based on Actual Production

Total Model Constants
Strain C1  C2

Plane Strain

0.35 2.234 1.896
0.70 2.024 2.362
1.05 2.052 3.196

Overall 1.768 1.844

Sheared Turbulence

4.00 1.791 2.314
6.00 0.769 1.046
8.00 1.757 2.394

- 10.00 0.633 0.657
12.00 3.200 4.745
Overall 1.526 2.034

Axisymmetric Strain

0.24 3.856 1.293
0.48 5.660 1.991
0.71 4.785 1.993
0.94 4.844 2.263
1.17 4.235 2.123
1.39 3.710 1.902

Overall
All cases 2.276 1.276

Last 5 cases 3.867 1.817
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